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Abstract 

Finite Fourier approximations fitted by use of 
orthogonality properties are identical with Fourier 
approximations fitted by least squares, but finite 
Gram-Charlier or Edgeworth (Hermite) approxima- 
tions fitted by the two methods differ. This may give 
a partial explanation of the better performance of 
Fourier expressions for the probability distributions 
of structure factors. An alternative Hermite (Myller- 
Lebedeff) expansion exists, for which the orthogonal- 
ity and the least-squares coefficients are identical, but 
they are not readily evaluated. 

Introduction 

Non-ideal probability distributions of structure fac- 
tors have for long been represented by expansions in 
Gram-Charlier or Edgeworth series involving 
Hermite polynomials (Karle & Hauptman, 1953; 
Rogers & Wilson, 1953; for other references see 
Shmueli & Wilson, 1981), More recently, they have 
been expanded in Fourier or Fourier-Bessel series 
(Weiss & Kiefer, 1983; Shmueli, Weiss, Kiefer & 
Wilson, 1984; Weiss, Shmueli, Kiefer & Wilson, 
1985). In general, the Fourier representations have 
been found to be better than the Hermite. At first 
sight this is rather surprising. The central-limit 
theorem applied to structure factors leads to the nor- 
mal distribution, which forms the first term of the 
Gram-Charlier or Edgeworth series. Many observed 
distributions are nearly normal, and they have no 
obvious resemblance to a Fourier series. There is a 
trivial reason for the better performance of the Fourier 
representation; one can include as many Fourier 
terms as one desires, whereas only about five terms 
are readily available for the Hermite representation. 
There is, however, what may be a more fundamental 
reason. 

Determination of coefficients 

Consider the approximation of a function by a series 
of other functions: 

J 
f ( x ) "  Y~ ajgj(x), (1) 

j=O 

where the number of terms is not infinite - the series 
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is truncated at some maximum value J of j, and 
possibly 'censored' by the omission of some terms 
with j<J.  In the present context, gj(x) could be 
cos 27rjx or n(x)Hej(x), where n(x) is the normal 
(Gaussian) distribution and Hej(x) is a Hermite poly- 
nomial. The coefficients aj could be evaluated in two 
ways: 

Method A. They could be found by using orthogo- 
nality conditions; for example, if (1) is multiplied by 
a function hk(X) orthogonal to gj(x) for j ¢  k and 
integrated over the range of existence off(x) ,  one has 

~f(X)hk(X) dx~-- E O+ ak J gk(X)hk(X) dx, (2) 
j~k 

thus determining ak. 

Method B. Alternatively, the values of aj could be 
chosen so that the sum in (1) is the best least-squares 
representation of f (x) :  

I [ f ( x ) - Z  ajgj(x)] 2 dx (3) 
J 

should be a minimum with respect to the aj. This 
leads to a set of simultaneous equations for determin- 
ing the aj: 

I gk(x)[f(x)-Y, ajg~(x) d x = 0 .  (4) 
J 

For the Fourier series the results of the two methods 
are identical, since the cosines are orthogonal to each 
other; the simultaneous equations reduce to a set of 
individual equations each determining one 
coefficient. The same is true for any set of functions 
for which hk(X) is the same as gk(X) (see, for example, 
Spiegel, 1974, Ch. 3). For the Hermite series (whether 
Gram-Charlier or Edgeworth) hk(X) ~ gk(X): 

gk(X) = n(x)Hek(x) (5) 

but 

hk(X) = Hek(x). (6 )  

The coefficients aj found by method A are (compara- 
tively) easily evaluated in terms of simple functions 
of the moments off(x) ,  and of even simpler functions 
of its cumulants, but method B leads to a set of 
simultaneous equations for the aj, and the aj have no 
simple physical interpretation. 
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Example 

These points may be illustrated by the simplest pos- 
sible Gram-Chalier or Edgeworth (Hermite) 
approximation: 

f (x)  ~ n(x)[1 + aHea(x)], (7) 

applicable for a symmetrical function such as the 
probability distribution of the structure factors of a 
centrosymmetric structure. Method A leads immedi- 
ately to 

a=~f(x)He4(x)dx /  ~ n(x)He24(x)d x (8) 

= k4/4!, (9) 

where k4 is the fourth cumulant of f(x).  Method B 
leads to 

a=j f (x)n(x)He4(x  ) dx/  I nE(x)HeZ4(x) dx, (10) 

which has an extra factor of n(x) in both numerator 
and denominator, reducing both in comparison with 
those of (8). The reduction is drastic; the integral in 
the denominator of (8) has the value 4! = 24, but that 
in (10) has the value 105/327r ~/2= 1.85 .... It is not 
obvious whether method A or method B will give the 
larger value of a, but it is obvious that they will give 
different values. It is also obvious that a from method 
B has no simple relationship to the moments of f (x) ,  
and indeed that it has no simple physical interpre- 
tation. 

Least-squares interpretation of the orthogonality fit 

Equation (1), with gj(x)= n(x)He/(x) and a t evalu- 
ated by using the orthogonality relations, is not a 
least-squares fit to f(x) .  Two questions immediately 
present themselves: 

(1) Is (1) a least-squares fit to anything, and if so, 
to what? 

(2) Is there an expansion, with n(x) as its leading 
term, that gives a least-squares fit to f (x )?  
Contemplation of variations on (3) gives a positive 
answer to both questions. 

One sees readily that minimizing 

I[f(x)n-X/Z(x)-nl/2(x) 2 airier(x)] 2 dx (11) 

with respect to the a's leads to the same set of 
equations for the a's as does method A. The usual 
Gram-Charlier/Edgeworth expansions thus corre- 
spond to a least-squares fit to the function 

n-1/2(x)f(x), (12) 

which decreases much more slowly with x than does 
f(x).  In the crystallographic application, therefore, 
method A gives great weight to fitting the distribution 
of the (comparatively few) strong reflexions, at the 
expense of a poorer fit for the distribution of the 
(much more numerous) weaker ones. This is readily 

seen by rewriting (11) in the form 

n-~(x)[ f (x ) -n(x)  y~ ajHej(x)] 2 dx. (13) 

The mean-square 'distance' between the distribution 
f (x)  and its representation is thus magnified by the 
reciprocal of the normal distribution, which becomes 
very large for x large. 

Cramrr (1945) gives a criterion for the existence 
of a convergent Gram-Charlier series. Put crudely, 
f (x)  must go to zero so fast that the integral of 
f(x)n-~/2(x) is finite. Expression (12) gives a physical 
picture of this criterion; if it is not satisfied the func- 
tion to be fitted by least squares increases indefinitely 
with increasing x, and thus cannot be matched by a 
series of functions that ultimately go to zero. 

To return to the second question, if in (1) Hej(x) 
is replaced by Hej(21/2x), so that the representation 
is 

f(x)~--~, ajn(x)Hej(2'/2x), (14) 

the orthogonality condition is satisfied with 

hk(X) = gk(X)= n(x)Hek(21/2x), (15) 

and the values of ak given by methods A and B 
become identical, just as for the Fourier representa- 
tion. Both give 

ak = I f(x)n(x)Hek(2 l/2x dx/  ~ n2(x)ne~(21/2x) dx 

(16) 

=(27r'/2/n!) ~f(x)n(x)Hek(21/2x)dx. (17) 

One sees readily that Hek(2~/2x) corresponds to the 
alternatively defined Hermite polynomial Hk(X), 
from which it differs only by a factor of 2 "/2 
(Abramowitz & Stegun, 1964, formulae 26.2.31-32). 
As in the Fourier representation, the coefficients ak 
are not readily expressible in terms of the moments, 
but (14) would give a least-squares fit to f (x)  without 
the undesirable overweighting of the values for large 
x. Preliminary attempts to evaluate ak by integration 
of (17) with f (x )  in the exact form given by Kluyver 
(1907) have not been encouraging. 

Expansions of the type (14) were considered by 
Myller-Lebedeff (1907). Her work appears to have 
been almost forgotten by statisticians; it rates a three- 
line footnote in Kendall & Stuart (1977, p. 90). 
Titchmarsh (1937, p. 79) gives a paragraph to the 
expansion, but without reference to its origin or uses. 
Perhaps the most familiar application is in the wave- 
mechanical representation of a simple harmonic 
oscillator (see, for example, Prince, 1982). 
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Abstract 
A method is described for analyzing molecular- 
surface complementarity, including the binding of 
ligands to proteins or the interaction of elements of 
secondary structure in protein interiors. A computer 
program can identify and model molecules that satisfy 
general criteria for good binding affinity. Computa- 
tional tests are presented. This approach is likely to 
have useful application in the analysis of surface 
recognition in proteins, including the identification 
of binding sites, and in the design of drugs for specific 
targets, by (i) suggesting potential pharmacophores 
to the medicinal chemist for further computational 
analysis or laboratory testing, (ii) suggestion of 
derivatives of a known ligand to enhance its affinity, 
or (iii) searching a data base of known drugs for a 
match'to the predicted 'ligand. 

Introduction 
Emil Fischer first proposed the 'lock and key' model 
of enzyme-substrate interactions. We now recognize 
the importance of surface complementarity not only 
for ligand binding, but for the interactions of packed 
a-helices and/3-sheets in protein interiors which are 
crucial in stabilizing native conformations (Lesk, 
1981; Chothia, 1984). Important applications of com- 
putational methods for analyzing molecular com- 
plementarity include: 

(1) Analysis of the packing in protein interiors: 
What will be the effect of a mutation on the conforma- 

* Permanent address: Fairleigh Dickinson University, Teaneck- 
Hackensack Campus, 1000 River Road, Teaneck, NJ 07666, USA. 

0108-7673/86/020083-03501.50 

tion of a protein (Lesk & Chothia, 1980)? What 
freedom do packed secondary structures have to 
facilitate and transmit conformational changes 
(Chothia, Lesk, Dodson & Hodgkin, 1983)? 

(2) Prediction of ligands complementary to 
specific clefts in proteins. Can we thereby design 
drugs of high affinity and specificity (Tickle, Sibanda, 
Pearl, Hemmings & Blundell, 1984; Beddell, 1984)? 
Can we rationalize the specificities of antibodies? 
With the application of protein-engineering tech- 
niques to antibodies, it will be useful to analyze 
changes in the antigen-binding site (Neuberger, 
1983). 

Given a protein structure that contains a cleft, how 
can one identify a ligand that has a structure com- 
plementary to the cleft? Analyses of protein-ligand 
interactions suggest that loss of solvent-accessible 
surface area, and complementarity in shape and 
charge distribution are the major determinants of 
affinity and specificity (Janin & Chothia, 1978; 
Chothia, 1984; Kollman, 1984). Studies of com- 
plementarity have used physical models [including 
making casts, using known protein structures as 
molds (Blow & Smith, 1975)], empirical parameters 
characterizing hydrophobicity (Smith, Hansch, Kim, 
Omiya, Fukumura, Selassie, Jow, Blaney & Lan- 
gridge, 1982) and interactive computer graphics (Lan- 
gridge, Ferrin, Kuntz & Connolly, 1981; Busetta, 
Tickle & Blundell, 1983). 

We describe here a computational technique to 
explore clefts in proteins and suggest candidate 
ligands. It does not require the facilities of interactive- 
graphics packages, but could easily and profitably be 
integrated with them. [This problem should be 
distinguished from a related one: determining the 
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